Penguins are normally perceived by the public as adorable little guys in a permanent tuxedo. Human activities, such as over fishing, and changes in climate, have migrating effects on penguins. In particular,  African penguins, which are endangered. Endangered species enjoy a protected status in their breeding locations. However, the feeding areas are not included. This is the reason why these penguins have migrated to new areas south of their natural feeding areas in order to find fish. This change has been reported by a group of scientist who have tracked the African penguins to determine the cause for their migration in search of new feeding areas.

It is key to establish protected feeding areas to ensure a reasonable supply of fish for the already declining populations of African penguins.

 

 

Advertisements

Many are familiar with Curiosity, the Mars rover, that has been exploring the martian surface since August 2012. The overarching goals of this mission are to determine whether life exists on the red planet, and to characterize its climate and geology. Until now, the mission steps were carefully planned with the rover following the instructions provided from Earth. During communication gaps, the rover would chose targets randomly until communication was restored. Now the rover has been upgraded with a new software based on artificial intelligence that allows the robot to make informed decisions regarding which objects to vaporize for samples. Curiosity can now scan new locations and discern whether it’s a promising target based on this new upgrade. This certainly helps selecting better targets for sampling and provides Curiosity with more autonomy while exploring Mars.

 

Recent work has highlighted the possibility of some cancer drugs being ineffective because of the relation between them and the intestinal microbiota. Interesting, right?. How could this happen?

As we have pointed out in previous posts, our intestinal microbiota is composed of a unique combination of microorganisms that influence our overall health and play different, and useful, functions. A published study pointed out that healthy individuals metabolize, or process, drugs differently than individuals with certain conditions. For example, certain drugs can become toxic after being processed by intestinal microbes. Based on this discovery, follow-up experiments will move on to humans to verify this finding. If true, this could explain responses in different individuals to the same drug and why some treatments might not work in all patients. Stay tuned!.

The intimate relationship between the immune cells and cancer cells has been known for a long time. The possibility of using the immune system against cancer cells as the “so-called” immuno-therapies in clinical trials show the promise of this powerful tool.

The use of PD-1 inhibitor drugs have proven quite successful. And so seem to be inhibitors for IDO. These inhibitors basically boost effectiveness of the immune response against cancer cells. For example, the protein IDO suppresses the immune system, which contributes to cancer cells growing and getting stronger. Inhibitors of these proteins are therefore a logical solution. Of course, these are not the only players. Tumors themselves express proteins that block the immune response. It is important to understand the complexity of this multiplayer scenario and, at the same time, be able to use as many tools as available to control and reduce tumor growth, especially for those tumors which are resistant to traditional treatments. The ability to use these drugs, alone or in combination, increases the chances to win the battle against cancer.

El rastreo de células mediante “etiquetas” de colores es un recurso relativamente común en investigación.  Se utiliza para localizar células del sistema inmune, células cancerígenas y células pluripotenciales, por ejemplo. En el campo de la biología de desarrollo, uno de los modelos animales más utilizados es el pez cebra. Es un modelo cómodo y relativamente fácil de manejar. Y la posibilidad de rastrear el comportamiento de las células epiteliales en este modelo es muy atractiva, por ejemplo para estudiar la regeneración de la superficie celular en heridas epiteliales. Un grupo de investigadores acaba de crear un pez cebra transgénico, llamado “skinbow”,  cuyas células epiteliales han sido marcadas con diferentes colores cada una de manera que se pueden detectar utilizando programas de imagen especializados para estudiar y cuantificar cambios en el tamaño celular, interacciones celulares y movilidad celular. Esta información es importante para el estudio de los mecanismos de regeneración epitelial.

 

 

The use of  “color tags” for cell tracking is a powerful tool for research studies. Zebrafish are a convenient and popular model used in developmental biology. The ability to tag individual cells in different colors opens a myriad of possibilities to study cell regeneration in conditions such as skin wounds, skin regeneration, or skin injuries where understanding the individual behavior of cells is key to develop adequate therapeutic strategies. Recently, a research group unveiled the so-called “skinbow” (skin cells+ rainbow colors), a transgenic zebrafish with individually color-tagged epithelial cells. This transgenic model enables the study of epithelial regeneration as it facilitates simultaneous tracking of thousands of cells in the epithelial surface using specific imaging tools to quantify changes in cell size, interactions, and mobility.

 

Durante décadas el concepto de resistencia microbiana ha traído de cabeza a médicos e investigadores. El uso indiscriminado de antibióticos de amplio espectro junto a la falta de antibiogramas para determinar la sensibilidad microbiana favorece la proliferación de cepas bacterianas resistentes con consequencias devastadoras en algunos casos.

Una alternativa a este problema es la llamada medicina personalizada o de precisión en la que se recurre a tratamientos especialmente diseñados para cada patología. En un estudio reciente se ha utilizado esta estrategia para tratar infecciones pulmonares causadas por la bacteria Gram-positiva Staphylococcus aureus. Esta bacteria secreta una toxina que invita la proliferación de bacterias Gram-negativas. Utilizando un tratamiento profiláctico con un anticuerpo dirigido específicamente contra esta toxina se ha logrado reducir la carga bacteriana de S. aureus y prevenir la proliferación de bacterias Gram-negativas. Este tipo de estrategias son especialmente beneficiosas en enfermedades infecciosas multifactoriales donde tratar al patógeno principal puede causar proliferación de oportunistas, agravando el cuadro clínico.

   

We have all heard about antibiotic resistance, which has been a concern in the medical and research community for decades now. Indiscriminate use of broad-spectrum antibiotics, often linked to not performing tests like an antibiogram to determine bacteria antibiotic sensibility, promotes resistant bacterial strains with sometimes devastating consequences.

One alternative to this problem lies on treatments tailored to the specific pathogen(s) involved or what has now become known as precision medicine. A recent study has highlighted the benefits of taking a tailor-made approach in multifactorial infectious diseases where the main etiologic agent favors growth of opportunistic bacteria.  The Gram-positive Staphylococcus aureus secretes a virulence factor, a toxin, that enhances co-infection by Gram-negative bacteria in lung infections. Interestingly, prophylactic treatment with an antibody directed against this toxin led to clearance of the Gram-postive and prevented proliferation of the Gram-negative pathogen. This strategy is clearly beneficial in multi-factorial diseases as it gets rids of pathogens without disturbing the host’s own microflora. Hopefully, it will become a frequent and affordable choice in the future.

 

 

Un estudio reciente ha desvelado que existe una relación entre metabolitos producidos por bacterias en el sistema gastrointestinal y el cáncer de colon. Aparentemente, la microflora intestinal podría no ser tan inocua como pensamos. Las bacterias producen un metabolito llamado poliamina que les ayuda a crear una capa de bacterias, o biofilm, que se adhiere a las células epiteliales del intestino. Este biofilm es regulado por las propias células epiteliales. Cuando se estudió la composición de muestras de colon en pacientes con cáncer y pacientes sanos, se descubrió que la cantidad de poliaminas es significativamente mayor en los pacientes enfermos, lo cual sugiere que existe una mayor producción de este metabolito. La causa de esta superproducción se desconoce aún y se están llevando a cabo experimentos para comprender mejor este fenómeno.

 

A recently published study has linked chemicals produced by bacteria to colon cancer. Apparently, the gut microflora that lines up our intestines is not as innocuous as we would like to think. Bacteria use a metabolite called polyamine to stick to one another and create bacterial biofilms, or very thin layers, on top of the epithelial cells forming intestinal lining.  A study on biofilm composition in healthy and cancerous tissue revealed that the amount of polyamines in cancerous tissue is significantly higher than in healthy tissue. One possibility is that bacteria are producing more of this metabolite for a number of reasons which are now being further investigated.

%d bloggers like this: